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Why do we need multivariable
analysis?

“Treatment (control) “ for the
confounding effects at analytical level

Stratification by confounder(s)
Multivariable / multiple analysis

Prediction of individual risk
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Regression models for multivariable analysis

No Continuous Linear regression model
Binomial Logistic regression model
Categorical (23) Multinomial (polytomous)

logistic regression model
Binomial (event) Cox proportional hazard
with censoring model

Yes Continuous Mixed effect model,

Generalized estimating
equation

Categorical (23) Generalized estimating
equation




LINEAR REGRESSION ANALYSIS
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Lung cancer mortality by daily cigarettes smoked

400
. 350
300
2350
~ 200

r

000/y

Lung Cancer Mortality

0 10 20 30
Cigarettes Smoked Per Day

Original data: Doll and Hill Br Med J 1956



Height explaining mathematical ability!!??

Source | SS df MS Number of obs = 32
------------- B e e R F(1, 30) = 726.87

Model | 412.7743 1 412.774322 Prob > F = 0.0000

Residual | 17.0365 30 .567882354 R-squared = 0.9604
------------- B Adj R-squared = 0.9590

Total | 429.8108 31 13.8648643 Root MSE = .75358

ama| Coef. Std. Err. P>[t|] [95% Conf. Interval]

_____________ F e ————— ————————————

height | .4118029 .0152743 26.96 0.000 .3806086 .4429973
_cons | -42.82525 2.191352 -19.54 0.000 -47.30059 -38.34992



Association between height and score of maths
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Both height and ability of maths increase with age
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Age is a confounding factor in the @

association between height and
ability of maths.




How age itself influences the association
between height and the ability of maths?

Let's see the equation
Ability of maths (AM) = o + B1(Height)
— AM = -42.8 + 0.41(Height)

AM = a + B1(Height) + B2(Age)
— AM = 1.48 - 0.01(Height) + 2.02 (Age)



" J
Significant association between height
and the ability of maths was gone after
adjusting for the effect of age

Source | SS df MS Number of obs = 32
------------- B et F(2, 29) = 851.23
Model | 422.6119 2 211.305972 Prob > F = 0.0000
Residual | 7.19885 29 .248236138 R-squared = 0.9833
------------- B e Adj R-squared = 0.9821
Total | 429.81079 31 13.8648643 Root MSE = .49823
ama|  Coef. Std. Err. P>[t|] [95% Conf. Interval]
_____________ o e e e e e e e e 1 e e et e et e et e et e et e et e et e et e e et et e et e et e e e e e e e e e e e

height | -.0121303 .0680948 -0.18 0.860 -.1513998 .1271393
age | 2.02461 3216095 6.30 0.000 1.366845 2.682375
_cons| 1.483038 7.185946 0.21 0.838 -13.21387 16.17995



No association between height and score of maths
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Interpretation of coefficients

Let's see the equation
Ability of maths (AM) = o + B1(Height)
— AM = -42.8 + 0.41(Height)
0.41 points increase by 1cm increase of height
AM = o + B1(Height) + B2(Age)
— AM = 1.48 - 0.01(Height) + 2.02 (Age)

0.01 points decrease by 1cm increase of height

Confounding effect: magnitude and direction of the association



" J
Interpretation of coefficients in general

To simplify, the explanatory variable is
binomial one: 1=exposed or 0=unexposed

Exposed: Ye =a + B(Exp=1)=a +
Unexposed: Yu = o + B(Exp=0) = o
Difference: Ye — Yu =3

m Coefficient estimate: difference in
dependent value



"
Interpretation of coefficients after
log-transformation of dependent variable

The explanatory variable is binomial one:
1=exposed or 0=unexposed

Exposed: In (Ye)=o + B(Exp=1)=a +
Unexposed: In (Yu) = a + B(Exp=0) = a
Difference: In(Ye) —In (Yu) = B

Ratio: Ye/Yu=¢ePB

m Coefficient estimate: ratio of dependent
value (after exponentiating)



LOGISTIC REGRESSION
ANALYSIS
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Logistic regression analysis

m Logistic regression is used to model the
probability of a binary response as a
function of a set of variables thought to
possibly affect the response (called
covariates).

-1: case (with the disease)

Y =

-0: control (no disease)



"
One could imagine trying to fit a linear model
(since this is the simplest model !) for the
probabilities, but often this leads to

problems:
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In a linear model, fitted probabilities can fall outside
of 0 to 1. Because of this, linear models are seldom
used to fit probabilities.




In a logistic regression analysis, the logit of
the probability is modeled, rather than the
probability itself.

P = probability of getting disease (0~1)

— - B\
oait (0) = | P This transformation
ogit (p) = log allows us to use a linear

_ 1-p _ model. )

As always, we use the natural log.
The logit is therefore the log odds, since odds =p / (1-p)



"
Logistic regression model

Now, we have the same function with linear
regression model in the right side.

—_— —

PX
logit (px) = log =o+ X
1-px_
where px = probability of event for a given value X,

and o and 3 are unknown parameters to be
estimated from the data.

— Multivariable analysis is applicable to adjust
the effect of confounding factor.
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Interpretation of coefficients of logistic
regression model

The explanatory variable is binomial one:
1=exposed or 0=unexposed

Exposed: log (Oe) =a + B(Exp=1)=a +
Unexposed: log (Ou) = a + B(Exp=0) = a
Difference: log(Oe) — log (Ou) =

Odds ratio: Oe / Ou=¢e P

m Coefficient estimate: Odds ratio (after
exponentiating)



STRATEGY FOR CONSTRUCTING
REGRESSION MODELS
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Basic principles

1. Stratified analysis should be first.

2. Determine which confounders to *
include in the model.

3. Estimate the shape of the exposure-
disease relation.

Dose-response relation
1. Evaluate Interaction
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How to determine confounders: e
data-dependent manner

1. Start with a set of predictors of outcome
based on the strength of their relation to
the outcome.

2. Build a model by introducing predictor
variables one at a time: check the amount
of change in the coefficient of the
exposure term

> 10% change: include it as a confounder




Example of a confounder (age)

Ability of maths (AM) = o, + B1(Height)
— AM = -42.8 + 0.41(Height)

AM = a + B1(Height) + B2(Age)
— AM = 1.48 - 0.01(Height) + 2.02 (Age)
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How to determine confounders: *
data-independent manner

Some researchers argue that

“Without data analysis, decide
confounders, important risk factors of
the outcome, based on the previous
studies.”

"How can we pick-up “important risk factors”? >
If there are few studies, how can we know ? ‘

\confounders?
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How many explanatory variables can we
use in a model?

Linear regression Sample size / 15 Up to around 6-7

model variables in 100
subjects
Logistic regression Smaller sample Up to 10 variables if
model size of outcome / the numbers of
10 cases and controls

are 100 and 300,
respectively.

Cox proportional The number of Up to 9 variables if
hazard model event/ 10 you have 90 events
out of 150 subjects
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ATTENTION!

m \When you include a categorical variable
in your model, you have to count that as
“the number of categories — 1°.

For example, the variable of age group used in
the previous practice, we have to count it as
“two” (=3 categories -1) variables.



"
If you cannot recruit enough
sample size

m Calculate “propensity score” which can be
used for adjustment of confounding effects.

Aspirin Use and All-Cause Mortality
Among Patients Being Evaluated for Known

or Suspected Coronary Artery Disease
A Propensity Analysi

Yok oy 1 '
Patricia A. Gum, MDD Context Although aspirin has been shown to reduce cardiovascular morbidity and

Maran Thamilarasan, MD short-term mortality following acute myocardial infarction, the association between
Junko Watanabe. MD its use and long-term all-cause mortality has not been well defined.

Eurene H. Blackstone. MD Objectives To determine whether aspirin is associated with a mortality benefit in
ug M— i stable patients with known or suspected coronary disease and to identify patient char-
Michael S. Lauer, MD acteristics that predict the maximum absolute mortality benefit from aspirin.




Table 1. Baseline and Exercise Characteristics According to Aspirin Use*

Aspinn As-':n?rin P
Vanable (n = 2310) (n = 3864) Value
Demographecs CE—
Age, mean (S0O), y 62 (11) 56 (12) =2 001
Men, No. (36) _ 2167 (56) = 001
CIIHE?E!E%?ND. () AI mOSt a” prOgnOStIC 432 1(17) =2 00
Hypertension, Mo. (%) ( — ) 1569 (41) =2 001
Tobacco use, No. (35) faCtorS n 28 are 500 (13) 001
o ooy ey F@lated to aspirin use! o oo
Prior coronary artery by, . . f\z\\':\'I\ == 001
Pnor percutanecus coronary miervention, No. (9¢) 667 (29) 148 IIE!'\ =2 001
Prior Q-wawve M, No. (36) 369 [16) 285 (7) S 1 =001
Adrial fibnllation, No. (55) 27 (1) 55 (1) 04
Congestive heart failure, Mo. (3) 127 (6) 178 (5) 1z
Medicaton use
Chgoxin use, No. (35) 171 (7) 216 (B) 004
B-Blocker use., No. (9G) 811 (35) 550 (14) =2 001
Ciltizzemiverapamil use, No. (35) 452 (20) 405 (1) =2 001
Mifedipine use, No. (%) 261 (11) 283 (7) =2 001
Lipid-lowering therapy. No. (96) 775 (34) 380 (10) <2001
ACE inhibitor use, No. (%6) 349 (15) 4417 (17) =2 001
Cardiovascular assessment and exercise capacity
Body mass index. mean (3D0). kg/m® 29 (5) 30(7) =2 001
Epection fracbon, mean (SD). % 50 (9) 53 (7 =2 001
Resting heart rate, mean (S0), beats/mmn 74 (13) 79 (14) <= 00

|- PRSP S-S I PRSI N R S ——— | e [ | P



Table 3. Selected B&SE‘“I‘IE &nd ExercIEE Chﬂr&EtE-HS’[IES Accordl

Use In Propensity "

After matching by propensity score, the
distribution of prognostic factors are similar
between aspirin users and non-users.

e

L It is just like a RCT! J

(pseud RCT) (= 531) {nﬂﬂ:ﬂ} Value
Demographics
Age, mean (S0), y 60 (11) 61 (17) 16
Men, No. (%) 951 (70) 974 (72) 33
Chrcal history
Diabetes, No. (%) 203 (15) 207 (15) 83
Hypertension, No. (%) 679 (50) R98 (52) A5
Tobacco use, No. (%) 161 (12) 162 (12) 95
Cardiac vanables
Pnor coronary artery disease, No. (%) 652 (48) 659 (49) 79
Prnor coronary artery bypass graft, No. (%) 251 (19) 235 (17) 42
Prnor percutanecus coronary ntervention, No. (%) 166 (12) 147 (17) 25
Prior Q-wave M1, No. (36) 194 (14) 206 (15) 52
Atrial fibrllation, No. (%) 21 (2] 24 (2) 65
Congestve heart failure, No. (%) 79 (6 a9 (7) 43




-
Table 4. Cox Proportional Hazards Analyses
of Aspirin Use and Mortality Among
Propensity-Matched Patients (n = 2702)"

Hazard
Ratio P
Model (95% CI) Value
Unadjusted 0.53 (0.38-0.74 002

Adjusted for propensity 0.53 (0.38-0.74) <.001

Adjusted for propensity 0.59 (0.42-0.83) 002
and selected
variablest

Adjusted for propensity 0.56 (0.40-0.78) <.001
and all covanatest

*Cl indicates confidence interval,

tSelecled variables incduded prior coronary artery disease,
prior coronary artery bypass grafting, prior percutane-
ous intervention, and ejection fraction =40%.

tFor alist of covariales, see Table 2 foolnole (1),

" You need to
include only

~

propensity score In

the model.

4
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Control of confounding with
regression model

m Compared to stratified analysis, several
confounding variables can be easily ;7

CHC
controlled simultaneously using a VQ
multivariable regression model.

m Results from the regression model are
readily susceptible to bias if the model
IS not a good fit to the data. A
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Statistic significance vs. Clinical significance

Statistic significance # Clinical significance

m P value(s) do NOT tell us the significance
in clinical practice / biological importance.

m |[f your sample size is quite large, you may
obtain a result with statistic significance.
So what?



RCT of donepezil for Alzheimer’ s disease

Lancet 2004 Jun 26363{9427):2105-15.
Long-term donepezil treatment in 565 patients with Alzheimer's disease (AD2000): randomised double-blind trial.

CDUFITIE' Tl Eorrall T i Traas T Bolle T Lumeh | Salbauoed B Edueardes S Hardumman WA Daftom: | T romne 0| cmdom 7 S o I__| Eentham P: ADEGDD CD”ahDrati'\"E
G ) algm .
— . Cognition averaged 0.8 MMSE points better

soerrae (99%C1 0.5-1.2; p<0.0001) and functionality
cmemn 1.0 BADLS points (0.5-1.6; p<0.0001) with 5 simees tearee

psycholo . . 97

METHOI donepeZII Over the fl rSt 2 years 2riod in which they were randomly
allocated donepezil (5 mg/ -0 completed this period were rerandomised to either donepezil (5 or 10 mg/day) or placebo, with
double-blind treatment cg T ) T D T ’ ) ' A
setnedby ossof ether |2 [J)onepezil is not cost effective, with benefits
assessments were soug ~all patier

FINDINGS; coanition averaged 02 11 D@lOW Miinimally relevant thresholds. More

points better (0.5-1.6; p<0.0001) with d

nstutonaiisation (42% vs 44% at 3 ye @ff@Ctive treatments than cholinesterase onal

care in the donepezil group compared |

institutional care was 0.96 (95% C1 0.7, ||} h | b|to S are need ed for AD . 1l

and psychological symptoms, carer psy ) mg
donepezil.

INTERPRETATION: DOI’IEEEE" is not cost EﬁEEt-i'l."E'. witi Denefits below minimally relevant thresholds. More effective treatments than cholinesterase

inhibitors are needed for Alzheimer's disease.
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