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Why do we need multivariable 
analysis?

“Treatment (control) “  for the 
confounding effects at analytical level

Stratification by confounder(s)
Multivariable / multiple analysis

Prediction of individual risk



Paired? Outcome variable Proper model
No Continuous Linear regression model

Binomial Logistic regression model
Categorical (≥3) Multinomial (polytomous) 

logistic regression model
Binomial (event) 
with censoring

Cox proportional hazard 
model

Yes Continuous Mixed effect model, 
Generalized estimating 
equation

Categorical (≥3) Generalized estimating 
equation

Regression models for multivariable analysis



LINEAR REGRESSION ANALYSIS



Lung cancer mortality by daily cigarettes smoked

Original data: Doll and Hill  Br Med J 1956 



Height explaining mathematical ability!!??

Source |       SS           df MS      Number of obs =  32
-------------+---------------------------------------- F(1, 30)        =    726.87

Model |  412.7743       1   412.774322   Prob > F        =    0.0000
Residual |  17.0365     30  .567882354   R-squared       =    0.9604

-------------+---------------------------------------- Adj R-squared   =    0.9590
Total |  429.8108       31  13.8648643   Root MSE        =    .75358

------------------------------------------------------------------------------------------------------
ama |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------------------------------
height  |   .4118029   .0152743    26.96   0.000     .3806086    .4429973
_cons |  -42.82525   2.191352   -19.54   0.000    -47.30059   -38.34992

------------------------------------------------------------------------------------------------------

Ability score of maths



Association between height and score of maths
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Both height and ability of maths increase with age
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Age is a confounding factor in the 
association between height and 

ability of maths.
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How age itself influences the association 
between height and the ability of maths?

Let’s see the equation 
Ability of maths (AM) =  + 1(Height) 
→ AM = -42.8 + 0.41(Height) 

AM =  + 1(Height) + 2(Age)
→ AM = 1.48 - 0.01(Height) + 2.02 (Age)



Significant association between height 
and the ability of maths was gone after 

adjusting for the effect of age

Source |       SS           df MS      Number of obs =        32
-------------+-------------------------------------------- F(2, 29)        =    851.23

Model |  422.6119    2  211.305972   Prob > F        =    0.0000
Residual |  7.19885   29  .248236138   R-squared       =    0.9833

-------------+-------------------------------------------- Adj R-squared   =    0.9821
Total |  429.81079  31  13.8648643   Root MSE        =    .49823

--------------------------------------------------------------------------------------------------
ama |      Coef.  Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+------------------------------------------------------------------------------------
height |  -.0121303   .0680948    -0.18   0.860    -.1513998    .1271393
age    |    2.02461   .3216095     6.30   0.000     1.366845    2.682375
_cons |   1.483038   7.185946     0.21   0.838    -13.21387    16.17995

--------------------------------------------------------------------------------------------------
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Interpretation of coefficients

Let’s see the equation 
Ability of maths (AM) =  + 1(Height) 
→ AM = -42.8 + 0.41(Height) 

AM =  + 1(Height) + 2(Age)
→ AM = 1.48 - 0.01(Height) + 2.02 (Age)

0.41 points increase by 1cm increase of height

0.01 points decrease by 1cm increase of height

Confounding effect: magnitude and direction of the association



To simplify, the explanatory variable is 
binomial one: 1=exposed or 0=unexposed

Exposed: Ye =  + (Exp=1) =  + 
Unexposed: Yu =  + (Exp=0) = 
Difference: Ye – Yu = 
 Coefficient estimate: difference in 

dependent value

Interpretation of coefficients in general



The explanatory variable is binomial one: 
1=exposed or 0=unexposed

Exposed: ln (Ye) =  + (Exp=1) =  + 
Unexposed: ln (Yu) =  + (Exp=0) = 
Difference: ln(Ye) – ln (Yu) = 
Ratio: Ye / Yu = e 

 Coefficient estimate: ratio of dependent 
value (after exponentiating)

Interpretation of coefficients after 
log-transformation of dependent variable



LOGISTIC REGRESSION 
ANALYSIS



Logistic regression analysis
 Logistic regression is used to model the 

probability of a binary response as a 
function of a set of variables thought to 
possibly affect the response (called 
covariates). 

1: case (with the disease)
Y = 

0: control (no disease)



One could imagine trying to fit a linear model 
(since this is the simplest model !) for the 
probabilities, but often this leads to 
problems:

In a linear model, fitted probabilities can fall outside 
of 0 to 1. Because of this, linear models are seldom 
used to fit probabilities.
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In a logistic regression analysis, the logit of 
the probability is modeled, rather than the 
probability itself.

P = probability of getting disease (0～1)
p

logit (p) = log
1-p

As always, we use the natural log. 
The logit is therefore the log odds, since odds = p / (1-p)

This transformation 
allows us to use a linear 
model.



Logistic regression model

Now, we have the same function with linear
regression model in the right side.

px
logit (px) =   log =  +  x

1 – px
where px = probability of event for a given value x, 
and  and  are unknown parameters to be 
estimated from the data.
→ Multivariable analysis is applicable to adjust 
the effect of confounding factor.



The explanatory variable is binomial one: 
1=exposed or 0=unexposed

Exposed: log (Oe) =  + (Exp=1) =  + 
Unexposed: log (Ou) =  + (Exp=0) = 
Difference: log(Oe) – log (Ou) = 
Odds ratio: Oe / Ou = e 

 Coefficient estimate: Odds ratio (after 
exponentiating)

Interpretation of coefficients of logistic 
regression model



STRATEGY FOR CONSTRUCTING 
REGRESSION MODELS



Basic principles

1. Stratified analysis should be first.
2. Determine which confounders to 

include in the model.
3. Estimate the shape of the exposure-

disease relation.   
Dose-response relation

1. Evaluate interaction



How to determine confounders: 
data-dependent manner
1. Start with a set of predictors of outcome 

based on the strength of their relation to 
the outcome.

2. Build a model by introducing predictor 
variables one at a time: check the amount 
of change in the coefficient of the 
exposure term

> 10% change: include it as a confounder



Example of a confounder (age)

Ability of maths (AM) =  + 1(Height) 
→ AM = -42.8 + 0.41(Height) 

AM =  + 1(Height) + 2(Age)
→ AM = 1.48 - 0.01(Height) + 2.02 (Age)



How to determine confounders: 
data-independent manner
Some researchers argue that 
“Without data analysis, decide 
confounders, important risk factors of 
the outcome, based on the previous 
studies.”

How can we pick-up “important risk factors”?
If there are few studies, how can we know 
confounders? 



How many explanatory variables can we 
use in a model?
Model Number of explanatory 

variables
Example

Linear regression 
model

Sample size / 15 Up to around 6-7 
variables in 100 
subjects

Logistic regression 
model

Smaller sample 
size of outcome /
10

Up to 10 variables if 
the numbers of 
cases and controls 
are 100 and 300, 
respectively. 

Cox proportional 
hazard model

The number of 
event / 10

Up to 9 variables if 
you have 90 events 
out of 150 subjects



ATTENTION!

When you include a categorical variable 
in your model, you have to count that as 
“the number of categories – 1”.

For example, the variable of age group used in 
the previous practice, we have to count it as 
“two” (=3 categories -1) variables.



If you cannot recruit enough 
sample size

 Calculate “propensity score” which can be 
used for adjustment of confounding effects.

Example



Almost all prognostic 
factors (n=28) are 

related to aspirin use!



After matching by propensity score, the 
distribution of prognostic factors are similar 

between aspirin users and non-users.

It is just like a RCT! 
(pseud RCT) 



You need to 
include only 

propensity score in 
the model.



Control of confounding with 
regression model
 Compared to stratified analysis, several 

confounding variables can be easily 
controlled simultaneously using a 
multivariable regression model.

 Results from the regression model are 
readily susceptible to bias if the model 
is not a good fit to the data.



Epidemiology (Rothman KJ, Oxford University Press)

Age is a confounding 
factor, but 

unfortunately, the age 
distribution is not 

overlapped.

● Exposed group

〇 Unexposed group

Stratified analysis 
would produce no 
estimate of effect.



Epidemiology (Rothman KJ, Oxford University Press)

● Exposed group

〇 Unexposed group

Although the age 
distribution is not 

overlapped, a regression 
model will fit two parallel 
straight lines through the 

data.



Statistic significance vs. Clinical significance

Statistic significance ≠ Clinical significance

 P value(s) do NOT tell us the significance 
in clinical practice / biological importance.

 If your sample size is quite large, you may 
obtain a result with statistic significance. 
So what?



RCT of donepezil for Alzheimer’s disease

Cognition averaged 0.8 MMSE points better 
(95%CI 0.5-1.2; p<0.0001) and functionality 
1.0 BADLS points (0.5-1.6; p<0.0001) with 
donepezil over the first 2 years.

Donepezil is not cost effective, with benefits 
below minimally relevant thresholds. More 
effective treatments than cholinesterase 
inhibitors are needed for AD.


