Multivariable analysis in clinical epidemiology

Chihaya Koriyama August 5th, 2017

Why do we need multivariable analysis?

"Treatment (control)" for the confounding effects at analytical level

Stratification by confounder(s)
 Multivariable / multiple analysis

Prediction of individual risk

Regression models for multivariable analysis

Paired?	Outcome variable	Proper model
No	Continuous	Linear regression model
	Binomial	Logistic regression model
	Categorical (≥3)	Multinomial (polytomous) logistic regression model
	Binomial (event) with censoring	Cox proportional hazard model
Yes	Continuous	Mixed effect model, Generalized estimating equation
	Categorical (≥3)	Generalized estimating equation

LINEAR REGRESSION ANALYSIS

Original data: Doll and Hill Br Med J 1956

Height explaining mathematical ability!!??

Source SS	df MS	Number of obs = 32 F(1, 30) = 726.87
Model 412.7743 Residual 17.0365	1 412.774322 30 .567882354	Prob > F = 0.0000 R-squared = 0.9604 Adi R-squared = 0.9590
Total 429.8108	31 13.8648643	Root MSE = $.75358$
Ability score of maths		
ama Coef.	Std. Err. t P>	t [95% Conf. Interval]
height .4118029 _cons -42.82525	.0152743 26.96 0.0 2.191352 -19.54 0.0	00 .3806086 .4429973 00 -47.30059 -38.34992

Association between height and score of maths

Both height and ability of maths increase with age

Age is a confounding factor in the association between height and ability of maths.

How age itself influences the association between height and the ability of maths?

Let's see the equation Ability of maths (AM) = α + β 1(Height) \rightarrow AM = -42.8 + 0.41(Height)

AM = α + β 1(Height) + β 2(Age) \rightarrow AM = 1.48 - 0.01(Height) + 2.02 (Age)

Significant association between height and the ability of maths was gone after adjusting for the effect of age

Source +	SS	df	MS	Number of obs = 32 F(2, 29) = 851,23
Model Residual	422.6119 7.19885	2 29	211.305972 .248236138	Prob > F = 0.0000 R-squared = 0.9833
+ Total 4	29.81079	31	13.8648643	Adj R-squared = 0.9821 Root MSE = .49823

ama +-	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
height	0121303	.0680948	-0.18	0.860	1513998	.1271393
age	2.02461	.3216095	6.30	0.000	1.366845	2.682375
_cons	1.483038	7.185946	0.21	0.838	-13.21387	16.17995

No association between height and score of maths

Interpretation of coefficients

Let's see the equation Ability of maths (AM) = α + β 1(Height) \rightarrow AM = -42.8 + 0.41(Height)

0.41 points increase by 1cm increase of height

 $AM = \alpha + \beta 1(\text{Height}) + \beta 2(\text{Age})$

 \rightarrow AM = 1.48 - 0.01(Height) + 2.02 (Age)

0.01 points decrease by 1cm increase of height

Confounding effect: magnitude and direction of the association

Interpretation of coefficients in general

To simplify, the explanatory variable is binomial one: 1=exposed or 0=unexposed

- Exposed: Ye = α + β (Exp=1) = α + β Unexposed: Yu = α + β (Exp=0) = α Difference: Ye – Yu = β
- Coefficient estimate: difference in dependent value

Interpretation of coefficients after log-transformation of dependent variable

The explanatory variable is binomial one: 1=exposed or 0=unexposed

Exposed: In (Ye) = α + β (Exp=1) = α + β Unexposed: In (Yu) = α + β (Exp=0) = α Difference: In(Ye) – In (Yu) = β Ratio: Ye / Yu = e^{β}

Coefficient estimate: ratio of dependent value (after exponentiating)

LOGISTIC REGRESSION ANALYSIS

Logistic regression analysis

Logistic regression is used to model <u>the</u> <u>probability of a binary response</u> as a function of a set of variables thought to possibly affect the response (called covariates).

Y =
$$\begin{cases} 1: \text{ case (with the disease} \\ 0: \text{ control (no disease)} \end{cases}$$

One could imagine trying to fit <u>a linear model</u> (since this is the simplest model !) for the probabilities, but often this leads to problems:

In a linear model, fitted probabilities can fall <u>outside</u> of 0 to 1. Because of this, linear models are seldom used to fit probabilities. In a logistic regression analysis, the **logit** of the probability is modeled, rather than the probability itself.

P = probability of getting disease $(0 \sim 1)$

As always, we use the natural log. The logit is therefore **the log odds**, since odds = p / (1-p)

Logistic regression model

Now, we have the same function with linear regression model in the right side.

logit (px) = log
$$\begin{bmatrix} px \\ ---- \\ 1 - px \end{bmatrix} = \alpha + \beta x$$

where px = probability of event for a given value x, and α and β are unknown parameters to be estimated from the data.

 \rightarrow Multivariable analysis is applicable to adjust the effect of confounding factor.

Interpretation of coefficients of logistic regression model

The explanatory variable is binomial one: 1=exposed or 0=unexposed

Exposed: $\log (O_e) = \alpha + \beta (Exp=1) = \alpha + \beta$ Unexposed: $\log (O_u) = \alpha + \beta (Exp=0) = \alpha$ Difference: $\log(O_e) - \log (O_u) = \beta$ Odds ratio: $O_e / O_u = e^{\beta}$

Coefficient estimate: Odds ratio (after exponentiating)

STRATEGY FOR CONSTRUCTING REGRESSION MODELS

Basic principles

- 1. Stratified analysis should be first.
- 2. Determine which **confounders to include** in the model.

3. Estimate the shape of the exposuredisease relation.

Dose-response relation

1. Evaluate interaction

How to determine confounders: data-dependent manner

- 1. Start with a set of predictors of outcome based on the strength of their relation to the outcome.
- 2. Build a model by introducing predictor variables one at a time: check the amount of change in the coefficient of the exposure term
 - > 10% change: include it as a confounder

Example of a confounder (age)

Ability of maths (AM) = α + β 1(Height) \rightarrow AM = -42.8 + 0.41(Height)

AM = α + β 1(Height) + β 2(Age) \rightarrow AM = 1.48 - 0.01(Height) + 2.02 (Age) How to determine confounders: data-independent manner

Some researchers argue that "<u>Without data analysis</u>, decide confounders, important risk factors of the outcome, based on the previous studies."

How can we pick-up "important risk factors"? If there are few studies, how can we know confounders?

How many explanatory variables can we use in a model?

Model	Number of explanatory variables	Example
Linear regression model	Sample size / 15	<u>Up to around 6-7</u> variables in 100 subjects
Logistic regression model	Smaller sample size of outcome / 10	<u>Up to 10 variables if</u> the numbers of cases and controls are 100 and 300, respectively.
Cox proportional hazard model	The number of event / 10	<u>Up to 9 variables if</u> you have 90 events out of 150 subjects

ATTENTION!

When you include a categorical variable in your model, you have to count that as "the number of categories – 1".

For example, the variable of age group used in the previous practice, we have to count it as "two" (=3 categories -1) variables.

If you cannot recruit enough sample size

Calculate "propensity score" which can be used for adjustment of confounding effects.

Example

Aspirin Use and All-Cause Mortality Among Patients Being Evaluated for Known or Suspected Coronary Artery Disease

A Propensity Analysis

Patricia A. Gum, MD Maran Thamilarasan, MD Junko Watanabe, MD Eugene H. Blackstone, MD Michael S. Lauer, MD

Context Although aspirin has been shown to reduce cardiovascular morbidity and short-term mortality following acute myocardial infarction, the association between its use and long-term all-cause mortality has not been well defined.

Objectives To determine whether aspirin is associated with a mortality benefit in stable patients with known or suspected coronary disease and to identify patient characteristics that predict the maximum absolute mortality benefit from aspirin.

 Table 1. Baseline and Exercise Characteristics According to Aspirin Use*

Variable	Aspirin (n = 2310)	No Aspirin (n = 3864)	P Value
Demographics			
Age, mean (SD), y	62 (11)	56 (12)	<.001
Men, No. (%)		2167 (56)	<.001
Clinical history Diabetes, No. (%)	gnostic	432 (11)	<.001
Hypertension, No. (%) factors (n=2)	8) are	1569 (41)	<.001
Tobacco use, No. (%)	0) 010	500 (13)	.001
Prior coronary artery c related to aspi	rin use!	778 (20)	<.001
Prior coronary artery by		2 49	<.001
Prior percutaneous coronary intervention, No. (%)	667 (29)	148 (4)	<.001
Prior Q-wave MI, No. (%)	369 (16)	285 (7)	<.001
Atrial fibrillation, No. (%)	27 (1)	55 (1)	.04
Congestive heart failure, No. (%)	127 (6)	178 (5)	.12
Medication use			
Digoxin use, No. (%)	171 (7)	216 (6)	.004
β-Blocker use, No. (%)	811 (35)	550 (14)	<.001
Diltiazem/veraparnil use, No. (%)	452 (20)	405 (10)	<.001
Nifedipine use, No. (%)	261 (11)	283 (7)	<.001
Lipid-lowering therapy, No. (%)	775 (34)	380 (10)	<.001
ACE inhibitor use, No. (%)	349 (15)	441 (11)	<.001
Cardiovascular assessment and exercise capacity Body mass index, mean (SD), kg/m ²	29 (5)	30 (7)	<.001
Ejection fraction, mean (SD), %	50 (9)	53 (7)	<.001
Resting heart rate, mean (SD), beats/min	74 (13)	79 (14)	<.001

Yeardine followed account of an one (CDV) and the

After matching by propensity score, the distribution of prognostic factors are similar between aspirin users and non-users.

Table 3. Selected Baseline and Exercise Characteristics According to Aspn.

Use in Propensity			
It is just like a RCT! (pseud RCT)	Aspirin (n = 1351)	No Aspirin (n = 1351)	P Value
Demographics Age mean (SD) v	60 (11)	61 (11)	16
Men, No. (%)	951 (70)	974 (72)	.33
Clinical history Diabetes, No. (%)	203 (15)	207 (15)	.83
Hypertension, No. (%)	679 (50)	698 (52)	.46
Tobacco use, No. (%)	161 (12)	162 (12)	.95
Cardiac variables Prior coronary artery disease, No. (%)	652 (48)	659 (49)	.79
Prior coronary artery bypass graft, No. (%)	251 (19)	235 (17)	.42
Prior percutaneous coronary intervention, No. (%)	166 (12)	147 (11)	.25
Prior Q-wave MI, No. (%)	194 (14)	206 (15)	.52
Atrial fibrillation, No. (%)	21 (2)	24 (2)	.65
Congestive heart failure, No. (%)	79 (6)	89 (7)	.43

Table 4. Cox Proportional Hazards Analyses of Aspirin Use and Mortality Among Propensity-Matched Patients (n = 2702)*

Model	Hazard Ratio (95% Cl)	<i>P</i> Value
Unadjusted	0.53 (0.38-0.74)	.002
Adjusted for propensity	0.53 (0.38-0.74)	<.001
Adjusted for propensity and selected variables†	0.59 (0.42-0.83)	.002
Adjusted for propensity and all covariates‡	0.56 (0.40-0.78)	<.001
and an ovariatest		

You need to include only propensity score in the model.

*Cl indicates confidence interval.

+Selected variables included prior coronary artery disease,

prior coronary artery bypass grafting, prior percutane-

ous intervention, and ejection fraction \leq 40%.

‡For a list of covariates, see Table 2 footnote (†).

Control of confounding with regression model

- Compared to stratified analysis, several confounding variables can be <u>easily</u> <u>controlled simultaneously</u> using a multivariable regression model.

Results from the regression model are readily <u>susceptible to bias</u> if the model is not a good fit to the data.

Epidemiology (Rothman KJ, Oxford University Press)

Epidemiology (Rothman KJ, Oxford University Press)

Statistic significance vs. Clinical significance

Statistic significance *≠* Clinical significance

- P value(s) do NOT tell us the significance in clinical practice / biological importance.
- If your sample size is quite large, you may obtain a result with statistic significance. So what?

RCT of donepezil for Alzheimer's disease

Lancet. 2004 Jun 26;363(9427):2105-15.

Long-term donepezil treatment in 565 patients with Alzheimer's disease (AD2000): randomised double-blind trial.

INTERPRETATION: Donepezil is not cost effective, with penefits below minimally relevant thresholds. More effective treatments than cholinesterase inhibitors are needed for Alzheimer's disease.